Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome.

Identifieur interne : 000147 ( Main/Exploration ); précédent : 000146; suivant : 000148

Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome.

Auteurs : Affan Ali Sher [Canada] ; Ang Gao [Canada] ; Kevin M. Coombs [Canada]

Source :

RBID : pubmed:32225060

Abstract

Autophagy is a key cellular process that involves constituent degradation and recycling during cellular development and homeostasis. Autophagy also plays key roles in antimicrobial host defense and numerous pathogenic organisms have developed strategies to take advantage of and/or modulate cellular autophagy. Several pharmacologic compounds, such as BafilomycinA1, an autophagy inducer, and Rapamycin, an autophagy inhibitor, have been used to modulate autophagy, and their effects upon notable autophagy markers, such as LC3 protein lipidation and Sequestosome-1/p62 alterations are well defined. We sought to understand whether such autophagy modulators have a more global effect upon host cells and used a recently developed aptamer-based proteomic platform (SOMAscan®) to examine 1305 U-251 astrocytic cell proteins after the cells were treated with each compound. These analyses, and complementary cytokine array analyses of culture supernatants after drug treatment, revealed substantial perturbations in the U-251 astrocyte cellular proteome. Several proteins, including cathepsins, which have a role in autophagy, were differentially dysregulated by the two drugs as might be expected. Many proteins, not previously known to be involved in autophagy, were significantly dysregulated by the compounds, and several, including lactadherin and granulins, were up-regulated by both drugs. These data indicate that these two compounds, routinely used to help dissect cellular autophagy, have much more profound effects upon cellular proteins.

DOI: 10.3390/cells9040805
PubMed: 32225060
PubMed Central: PMC7226796


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome.</title>
<author>
<name sortKey="Sher, Affan Ali" sort="Sher, Affan Ali" uniqKey="Sher A" first="Affan Ali" last="Sher">Affan Ali Sher</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Ang" sort="Gao, Ang" uniqKey="Gao A" first="Ang" last="Gao">Ang Gao</name>
<affiliation wicri:level="4">
<nlm:affiliation>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coombs, Kevin M" sort="Coombs, Kevin M" uniqKey="Coombs K" first="Kevin M" last="Coombs">Kevin M. Coombs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4</wicri:regionArea>
<wicri:noRegion>MB R3E 3P4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32225060</idno>
<idno type="pmid">32225060</idno>
<idno type="doi">10.3390/cells9040805</idno>
<idno type="pmc">PMC7226796</idno>
<idno type="wicri:Area/Main/Corpus">000097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000097</idno>
<idno type="wicri:Area/Main/Curation">000097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000097</idno>
<idno type="wicri:Area/Main/Exploration">000097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome.</title>
<author>
<name sortKey="Sher, Affan Ali" sort="Sher, Affan Ali" uniqKey="Sher A" first="Affan Ali" last="Sher">Affan Ali Sher</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gao, Ang" sort="Gao, Ang" uniqKey="Gao A" first="Ang" last="Gao">Ang Gao</name>
<affiliation wicri:level="4">
<nlm:affiliation>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coombs, Kevin M" sort="Coombs, Kevin M" uniqKey="Coombs K" first="Kevin M" last="Coombs">Kevin M. Coombs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4</wicri:regionArea>
<wicri:noRegion>MB R3E 3P4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy is a key cellular process that involves constituent degradation and recycling during cellular development and homeostasis. Autophagy also plays key roles in antimicrobial host defense and numerous pathogenic organisms have developed strategies to take advantage of and/or modulate cellular autophagy. Several pharmacologic compounds, such as BafilomycinA1, an autophagy inducer, and Rapamycin, an autophagy inhibitor, have been used to modulate autophagy, and their effects upon notable autophagy markers, such as LC3 protein lipidation and Sequestosome-1/p62 alterations are well defined. We sought to understand whether such autophagy modulators have a more global effect upon host cells and used a recently developed aptamer-based proteomic platform (SOMAscan
<sup>®</sup>
) to examine 1305 U-251 astrocytic cell proteins after the cells were treated with each compound. These analyses, and complementary cytokine array analyses of culture supernatants after drug treatment, revealed substantial perturbations in the U-251 astrocyte cellular proteome. Several proteins, including cathepsins, which have a role in autophagy, were differentially dysregulated by the two drugs as might be expected. Many proteins, not previously known to be involved in autophagy, were significantly dysregulated by the compounds, and several, including lactadherin and granulins, were up-regulated by both drugs. These data indicate that these two compounds, routinely used to help dissect cellular autophagy, have much more profound effects upon cellular proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32225060</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4409</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E805</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells9040805</ELocationID>
<Abstract>
<AbstractText>Autophagy is a key cellular process that involves constituent degradation and recycling during cellular development and homeostasis. Autophagy also plays key roles in antimicrobial host defense and numerous pathogenic organisms have developed strategies to take advantage of and/or modulate cellular autophagy. Several pharmacologic compounds, such as BafilomycinA1, an autophagy inducer, and Rapamycin, an autophagy inhibitor, have been used to modulate autophagy, and their effects upon notable autophagy markers, such as LC3 protein lipidation and Sequestosome-1/p62 alterations are well defined. We sought to understand whether such autophagy modulators have a more global effect upon host cells and used a recently developed aptamer-based proteomic platform (SOMAscan
<sup>®</sup>
) to examine 1305 U-251 astrocytic cell proteins after the cells were treated with each compound. These analyses, and complementary cytokine array analyses of culture supernatants after drug treatment, revealed substantial perturbations in the U-251 astrocyte cellular proteome. Several proteins, including cathepsins, which have a role in autophagy, were differentially dysregulated by the two drugs as might be expected. Many proteins, not previously known to be involved in autophagy, were significantly dysregulated by the compounds, and several, including lactadherin and granulins, were up-regulated by both drugs. These data indicate that these two compounds, routinely used to help dissect cellular autophagy, have much more profound effects upon cellular proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sher</LastName>
<ForeName>Affan Ali</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Ang</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coombs</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">BafilomycinA1</Keyword>
<Keyword MajorTopicYN="Y">Rapamycin</Keyword>
<Keyword MajorTopicYN="Y">aptamers</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">bioinformatics</Keyword>
<Keyword MajorTopicYN="Y">cell responses</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32225060</ArticleId>
<ArticleId IdType="pii">cells9040805</ArticleId>
<ArticleId IdType="doi">10.3390/cells9040805</ArticleId>
<ArticleId IdType="pmc">PMC7226796</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cancer Biol Ther. 2012 Apr;13(6):389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22313638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Lett. 2018 Feb;15(2):2477-2484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29434961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Sep 2;20(3):417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25043815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Apr;79(7):4369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 Jan 16;7:683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28138328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(8):1437-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26156798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e42088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2011 Jul;52(7):1383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2008 Jan 22;5(1):e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Markers. 2018 Dec 18;2018:9230479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30662577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Aug 27;23(21):7789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12944508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2018 Jan;234(1):904-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30076715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2012 Jan;33(1):116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22214786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Feb 09;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30744138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2011 Jan;33(2):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21138487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 May;1813(5):878-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jun;42(11):7084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24792164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2017 Feb;18(2):132-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28092376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mediators Inflamm. 2014;2014:861231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24966471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Pathol. 2015 Dec;99(3):570-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26216406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Feb 15;124(Pt 4):495-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 May 18;8:531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28572801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CNS Oncol. 2014 Jan;3(1):5-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25054892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Synaptic Neurosci. 2010 Sep 08;2:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cereb Blood Flow Metab. 2018 Jan;38(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 May 2;25(5):1091-1102.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28467927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Jul;9(7):741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2014 Mar;9(2):168-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23771592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2005 Apr;192(2):394-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1707-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2000 Aug 1;20(15):5696-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 17;9(10):e110668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2019 Apr 16;50(4):778-795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30995499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Pathol. 1987;15(3):294-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3317769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2019 Feb;19(4):e1800309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30578658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Metab. 2017 Jan 28;6(4):366-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28377875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2015 May 1;194(9):4251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Jul;122(7):2454-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22653056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Jan 2;28(1):264-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2014 May 26;205(4):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24862571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Cytokine Res. 2015 May;35(5):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25536401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Results Probl Cell Differ. 2006;43:259-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17068976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Sep;28(18):5747-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18644871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Mar 26;10:596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30984137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2015 Jun 26;12:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26112704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Feb 11;120(3):421-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15707899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2017 Jun 20;46(6):957-967</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28636962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 07;5(12):e15004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21165148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Aug 22;14(8):e0220254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31437157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2009 Jun;9(6):429-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Regen Res. 2019 Oct;14(10):1711-1712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31169184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Ther Med. 2017 Aug;14(2):1051-1057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28810557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol Commun. 2019 Feb 5;7(1):15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30722785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 2012 Apr;168(1):52-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22385237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Sep;15(3):344-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18804433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2019 Jun 04;13:569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31213977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol Commun. 2019 May 15;7(1):75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31092287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2018 Mar 12;44(5):555-565.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29533771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2012 Dec 01;9:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2016 Apr 5;319:155-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26827945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2010 Aug;114(4):1193-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(20):10888-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1992 Oct;131(4):1948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1396338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2005 Apr;93(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2016 Jan 06;13:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26738635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2019 Sep 10;10:2066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31552027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Mar 6;9(1):3716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30842511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Apr;122(4):1172-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22466659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Dev Pathol. 2015 Jan-Feb;18(1):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25299246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2014 Nov 6;33(45):5225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2013 Dec 15;25(6):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24183701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Apr;69(7):1125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2019 Jan 24;18(1):17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30678689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2018 Apr 9;20(5):584-585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29608764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Manitoba</li>
</region>
<settlement>
<li>Winnipeg</li>
</settlement>
<orgName>
<li>Université du Manitoba</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Manitoba">
<name sortKey="Sher, Affan Ali" sort="Sher, Affan Ali" uniqKey="Sher A" first="Affan Ali" last="Sher">Affan Ali Sher</name>
</region>
<name sortKey="Coombs, Kevin M" sort="Coombs, Kevin M" uniqKey="Coombs K" first="Kevin M" last="Coombs">Kevin M. Coombs</name>
<name sortKey="Coombs, Kevin M" sort="Coombs, Kevin M" uniqKey="Coombs K" first="Kevin M" last="Coombs">Kevin M. Coombs</name>
<name sortKey="Coombs, Kevin M" sort="Coombs, Kevin M" uniqKey="Coombs K" first="Kevin M" last="Coombs">Kevin M. Coombs</name>
<name sortKey="Gao, Ang" sort="Gao, Ang" uniqKey="Gao A" first="Ang" last="Gao">Ang Gao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000147 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000147 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32225060
   |texte=   Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32225060" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020